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Optical diffraction radiation (ODR) is a promising technique for performing noninvasive beam
diagnostics. The technique places a metal target near the beam line, which intercepts the virtual
quanta associated with the relativistic motion of the beam. The virtual quanta are reradiated, and
the resulting intensity distribution on the target is imaged. Features of the intensity distribution are
correlated with beam size and position. Here I present the results of a simulation of measurements of
beam width and position using ODR. The effects of variations in impact parameter and wavelength
on the sensitivity of ODR imaging to changes in beam size and position are explored.

INTRODUCTION

Optical diffraction radiation (ODR) is a promis-
ing technique for performing beam diagnostics in a
noninvasive manner. Techniques such as wire scan-
ners are disadvantageous in that they interact di-
rectly with the beam, degrading beam quality as well
as decreasing detector lifetime. Further, the ODR
technique has potential to measure beam width and
position simultaneously.

ODR is described through the Weizsacker-
Williams virtual quanta method. The model ex-
ploits the similarity between the electromagnetic
fields of a relativistic particle and the fields of pho-
tons, called virtual quanta. When a metal target
is placed near the beam, the virtual quanta interact
with the electrons in the target, which emit photons.
To perform beam diagnostics, the resulting intensity
distribution on the target is imaged and features of
the distribution are correlated to beam parameters.

Here, we explore the application of ODR imaging
to measurements of beam width and position. In
particular, it is shown that the width of the perpen-
dicularly polarized intensity distribution and the ra-
tio of minimum to maximum in the parallel polarized
component are strongly correlated with beam width.
The beam position can be measured using the vari-
ation in intensity on the target. The simulations use
the parameters listed in table 1, corresponding to
the APS and the Tevatron.

APS TEV
γ 14000 1000
σx 100µm 400µm
σy 20µm 100µm
b 13σy 8σy

λc 120nm 20µm

FIG. 1: APS and Tevatron parameters

OPTICAL DIFFRACTION RADIATION

The application of the Weizsacker-Williams vir-
tual quanta method is depicted in figure 2. The
fields of a relativistic particle are equivalent to those
of a photon traveling parallel to the beam (the lon-
gitudinal component of the fields, inversely propor-
tional to γ, is neglected here). The virtual quanta
interact with the metal target in the same manner
as real photons, and consequently, real photons are
reflected off the metal target, as shown in figure 3.

FIG. 2: Virtual quanta in the Wiesacker-Williams
method

Derivation of Intensity Distribution

To calculate the intensity distribution on the tar-
get, we first calculate the Fourier transform of the
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FIG. 3: ODR beam width monitoring schematic

relativistic particle’s fields. The fields of a charge
moving along the z-axis are:
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Note that the longitudinal field is inversely propor-
tional to γ; for the Tevatron and APS energies,
the longitudinal field is several orders of magnitude
smaller than the transverse fields.

We now calculate the differential intensity distri-
bution on the target. The Poynting vector (in Gaus-
sian units) is given by

S =
c

4π
E×B∗

In the rest frame of the particle, B′ = 0; since the
fields transform as B′

⊥ = γ(B⊥−|β×E|), this yields
Bx = −βEy and By = βEx, and

S =
c

4π

[
−βEzE

∗
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∗
y ŷ + β(|Ex|2 + |Ey|2)ẑ

]
Since we have neglected the longitudinal field

components, we need only consider the ẑ component
of S; regardless, the longitudinal field components
lead to an inductive term in the intensity spectrum,
which does not cause radiation. Here we consider
a target oriented perpendicularly to the beam (in
practice the target would be inclined with respect
to the beam so that the ODR can be imaged away
from the beam line. This complicates analysis of
the diffraction that occurs between the target and
the camera, but only causes a scale factor in the in-
tensity distribution.) The total power incident on
the target is

∆P = S ·∆A = S · n̂∆A

=
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]
∆A
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With ∆P = d
dt∆W , we define I = ∆W

∆A , so that
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|Êρ(ω)|2

=
βc

2

(qα

πv

)
|K1(αρ)|2

To account for the finite size of the beam, this
single-particle result is convoluted with the beam
distribution function, yielding
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where (x0, y0) is the beam centroid, rp is the point
of observation, and r is the variable of integration.

To consider the perpendicular and parallel po-
larized components, we simply add the appropriate
trigonometric factor, e.g.
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The total and polarized differential intensity dis-

tributions are plotted in figure 4, using the APS pa-
rameters. The total intensity contours exhibit spher-
ical symmetry, while the polarized intensity contours
have a double-lobed pattern with a minimum per-
pendicular to the direction of polarization.

(a)Total intensity

(b)Parallel polarized intensity

(c)Perpendicular polarized intensity

FIG. 4: Intensity contours, with rectangular target

BEAM WIDTH MEASUREMENT

Two features of the intensity distribution, the full
width-half maximum (FWHM) of the perpendicular
polarized (with respect to the target edge) distribu-
tion and the furrow in the parallel polarized distri-
bution, show correlation with beam width. Figure 5
shows the intensity distribution along the edge of the
target in figure 4. The parallel polarized distribution
shows a distinctive peak-valley contour.

The dependence of the peak-valley shape on beam
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FIG. 5: Total and polarized intensity distribution along
target edge

width is shown in figure 6. As the beam width
σx increases, the valley becomes less pronounced.
This correlation is quantified by taking the ratio of
the central minimum to the maximum (MNMX), as
shown in figure 7. The FWHM shows a similar pos-
itive correlation with beam width, shown in figure
8.
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FIG. 6: Parallel polarized intensity along the target edge
for different beam widths
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FIG. 7: MNMX vs σx for APS parameters
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FIG. 8: FWHM vs σx for APS parameters

Sensitivity to Impact Parameter

In this section, the sensitivity of the MNMX and
FWHM plots to the impact parameter of the beam
is analyzed. In general, the target will not be closer
than about 5σy for a lepton collider and 8σy for a
hadron collider. The intensity of radiation decreases
with impact parameter, as shown in figure 9; how-
ever, the shapes of the MNMX and FWHM curves
change as well, and the impact parameter must be
chosen so that there is both an observable amount
of radiation and an appreciable variation in MNMX
and FWHM over the expected range of beam width
variation.

 0

 1e-29

 2e-29

 3e-29

 4e-29

 5e-29

 6e-29

 7e-29

 8e-29

 4  6  8  10  12  14  16  18  20

In
te

ns
ity

Impact Parameter (σy)

’parallelAPS.dat’ using 1:3 every 60::31

FIG. 9: Parallel Polarized Intensity vs. Impact Parame-
ter, APS

The MNMX and FWHM curves are plotted for a
range of impact parameters in figure 10. To maxi-
mize sensitivity to beam width variations, it is de-
sired to have a large variation in MNMX or FWHM
around the nominal beam width. In both the APS
and the Tevatron examples, MNMX shows greater
variation at smaller beam widths, while FWHM
shows greater variation at beam widths larger than
the nominal beam width. Figure 11 shows the
derivative of the MNMX plots. Based on figure 11,
we choose a nominal impact parameter of 11-14σy
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for the Tevatron example and 7-9σy for the APS ex-
ample.
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(a)MNMX, APS
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(b)MNMX, Tevatron
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FIG. 10: MNMX and FWHM vs. beam width (σx) for several impact parameters.
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FIG. 11: Derivative of MNMX with respect to beam width vs. beam width for several impact parameters

Derivative of MNMX with respect to the beam width as a function of the beam width for several impact
parameters
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Sensitivity to Wavelength

Here we consider the variation of intensity with
wavelength, the variation in the FWHM and MNMX
curves with wavelength, and the effect of the camera
wavelength filter.

Intensity Variation

The Bessel function K1(x) has the asymptotic
form K1(αρ) ≈ 1

x for x � 1. In the limit αρ =
ωρ
γv � 1, the intensity distribution becomes
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Thus for large wavelengths, the intensity distribu-
tion is independent of wavelength. The scale of this

approximation is given by

2πρc

γvλc
≈ 1

λc ≈ γ

2πb

where we have taken v ≈ c and ρ ≈ b. This corre-
sponds to λc = 116nm for the APS parameters and
λc = 20µm for the Tevatron parameters. The in-
tensity falls off rapidly below λc; this indicates the
use of optical radiation for the APS example, and
infrared radiation for the Tevatron example. Ra-
diation below the critical wavelength must be used
for the Tevatron, however, due to the restriction of
camera technology to the near-infrared.

MNMX and FWHM Variation

Figure 12 shows the MNMX and FWHM curves
for various wavelengths. As expected, above the crit-
ical wavelength there is little change. Below the crit-
ical wavelength, the general shape of the curves re-
mains the same. For the APS parameters, optical
radiation above the critical wavelength will be em-
ployed, so there is no effect on the shapes of the
MNMX and FWHM curves. For the Tevatron
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FIG. 12: MNMX and FWHM vs. beam width (σx) for several wavelengths
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parameters, radiation well below the critical wave-
length will be employed. In figure 12-b, the curves
corresponding to near-infrared radiation show ap-
preciable variation around the nominal beam width
of 400µm. In both cases, the effect of wavelength
on the shapes of the MNMX and FWHM curves is
small.

Wavelength Range

Since a detector integrates over a range of
wavelengths, accurate and simple determination of
MNMX and FWHM values requires minimization
of the variation in MNMX or FWHM with wave-
length. Normalized values of MNMX and FWHM
are plotted against wavelength for fixed beam size
and impact parameter in figure 13. FWHM in-
creases with wavelength, while MNMX decreases
with wavelength. For the APS example, the vari-
ation of MNMX and FWHM with wavelength sta-
bilizes towards the upper end of the optical spec-
trum. For the Tevatron example, the variation of
MNMX and FWHM with wavelength stabilizes at
much higher wavelength, near tens of microns; to
accurately determine MNMX and FWHM values, a
deconvolution algorithm would need to be applied.
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FIG. 13: MNMX and FWHM vs Wavelength for fixed
beam size and impact parameter

Summary

For the APS example, the use of wavelengths to-
wards the upper optical range gives higher intensi-
ties and less variation in MNMX and FWHM over
the camera wavelength range. Due to available in-
frared technology, the Tevatron example suffers from
two drawbacks: the detector must operate below
the critical wavelength, and the MNMX and FWHM
values vary significantly over the range of detector
wavelengths.

BEAM POSITION MONITORING

We hope to adapt the ODR technique to beam
position monitoring as well as beam width measure-
ment. Two possible methods of determining the
beam position and the range of position variation
are considered here: absolute intensity measurement
and observation of minima and maxima positioning.

Absolute Intensity Measurement

Figure 14 shows the variation of intensity with im-
pact parameter. The intensity ostensibly varies with
impact parameter in a predictable manner; hence it
could be possible to determine the impact param-
eter instantaneously by measuring the intensity at
a fixed point of the target and comparing the value
measured to a table.
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FIG. 14: Perpendicularly Polarized Intensity Vs. Impact
Parameter, APS

Minima and Maxima Positioning

The intensity features used to determine beam
width could also be used to determine beam posi-
tion. In particular, the maximum of the perpendic-
ularly polarized intensity and the minimum of the



8

parallel polarized intensity are aligned with the lo-
cation of the beam. Figure 15 shows a polarized
intensity distribution without target. The beam po-
sition, indicated by the black dot, is aligned with
the furrow (corresponding with the intensity min-
ima) in the vertical direction, and with the peak
(corresponding to the intensity maxima) in the hor-
izontal direction. An L-shaped target could be em-
ployed to determine the location of the beam in two
dimensions.

FIG. 15: Polarized intensity distribution with beam lo-
cation indicated

CONCLUSION

This simulation has detailed two aspects of opti-
mizing the ODR beam diagnostic technique. The

impact parameter affects the magnitude of intensity
and the shape of the MNMX and FWHM curves. Its
value should be chosen to yield maximum variation
in MNMX and FWHM around the nominal beam
width, e.g. chosen to yield the maximum sensitivity
to beam width variation. The wavelength range cho-
sen affects the magnitude of intensity, the accuracy
and simplicity of determining MNMX and FWHM
values, and the shape of the MNMX and FWHM
curves to a small extent. Ideally, we would like to
have large intensity and little variation in MNMX
and FWHM with wavelength. This is satisfied in
the upper optical range for the APS parameters, but
around 20µm for the Tevatron parameters. Since
detector technology limits us to the near infrared,
applying the ODR technique in the Tevatron exam-
ple suffers from operating at submaximal intensities,
and would require a deconvolution algorithm to de-
termine MNMX and FWHM values.

It remains to account for the diffractive effects as
the radiation propagates from the target, through a
focusing lens, and to the camera. The limit of the
far field approximation scales as γ2, hence it may be
necessary to consider the Fresnel regime, especially
for lepton colliders.


